
JOURNAL OF APPROXIMATION THEORY 29, 116-131 (1980)

On Continuity of Metric Projections

FRANK DEUTSCH AND JOSEPH M. LAMBERT

Department of Mathematics, Pennsylvania State University,
University Park, Pennsylvania 16802

Communicated by Oved Shisha

Received November 17, 1978

DEDICATED TO THE MEMORY OF P. TURAN

1. INTRODUCTION

In this note we collect a number of complements and extensions to some
known results due to Panda and Kapoor [12], Oshman [10], and Holmes
and Kripke [6], and also point out an error in the main result of [8]. These
results are all concerned with the common theme of continuity of metric
projections.

Let X be a (real or complex) normed linear space and M a subset of X.
The metric projection onto M is the mapping PM: X --+ 2M which associates
with each x in X its (possibly empty) set of nearest points in M. Thus

PM(x) = {m EO M: II x - mil = d(x, M)},

where d(x, M) = inf{11 x - y II: Y EM}. M is called proximinal (resp.,
Chebychev if PM(x) contains at least (resp., exactly) one point for each x
in X. A sequence (Yn) in M is called minimizing for x in X iflim II x - )In II =
d(x, M). Recall that a normed linear space X is rotund (R) or strictly convex
provided the boundary of the unit ball in X contains no line segements.

Vlasov [16] introduced the concept of compact local uniform rotundity
(CLUR). Oshman [11] and, independently, Panda and Kapoor [12] have
shown that in CLUR space the class of Chebychev sets with continuous metric
projections coincides with the class of approximatively compact Chebychev
sets. In Section 2, we extend the results of [12] to a more general setting.
For example (Theorem 2.6), in a CLUR space, the metric projection onto
a proximinal set is compact-valued and upper semicontinuous on a dense set.

In Section 3, we consider a class of j3-suns investigated by Oshman [10],
enlarge this class somewhat, and show that each member of this class has a
continuous metric projection irrespective of the gemometry of the Banach
space.
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Section 4 contains a few complements to some results of Holmes and
Kripke [6] concerning linear metric projections. For example (Proposition 4)
for each 1 ~ r ~ 2, we can construct a Banach space X and a subspace
M of X so that M is Chebyshev, PM is linear, Ii P.\J ii = r, and the kernel
of PM is also a Chebyshev subspace with a continuous metric projection.

In Section 5, we point out that the "Klee" space does not have the property
attributed to it in [8]. Thus several questions and conjectures concerning the
continuity of metric projections (which this space apparently settled) are
still unresolved.

We will use the following notation throughout. If X is a Dormed linear
space, then

SeX) = {x E X: !i x it = I}.

A word about the organization of this paper. With the exception of some
definitions given in early sections and used in later ones, each section is
independent of the others, and thus can be read in any order.

2. PROPERTIES OF CLUR SPACES

In this section we note that the main results of Panda and Kapoor [12]
in CLUR spaces can be extended to the setting of proximinal (rather than
Chebychev) sets, and outer radially lower semicontinuous (rather than
continuous) metric projections.

A normed linear space X is called compact!.v locally uniformly rotund
(CLUR) if x, X n in SeX) and II X n + x II ~ 2 imply that (xn) has a convergent
subsequence.

Clearly, every finite-dimensional space is CLUR, and CLUR generalizes
the notion of a locally uniformly rotund (LUR) space. Indeed, it is easy to
verify that X is LUR if and only if X is CLUR and (R). (In [12J, CLUR
was called property (M). However, we conform to the earlier designation
[16, 17].)

DEFI~ITlON 2.1. Let K be a subset of X. The metric projection PK is
said to be outer radially lower semicontinuous (o.r.Ls.c.) at X o if for every
Yo in PK(Xo) and each open set Wwith W n PK(Xo) =!=- 0 there exists a neigh­
borhood U of Xosuch that W n PK(X) =!=- 0 for every x in Un {xo ,- A(X - y~):

,\ ~ OJ. P K is called o.r.l.s.c. if it is o.r.l.s.c. at each point of x.
This generalization of lower semicontinuity was introduced and studied

In [3, 4] (where it was called "ORL continuity"). It was shown there, for
example, that every sun has an o.r.l.s.c. metric projection; and in spaces of
type C(T) or II(T), the converse is valid.

By making the appropriate modifications of the proof of Theorem 1
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in [I2]-using Blatter's generalization [2, Lemma 4] of a result of Vlasov
[16, Lemma l]-we can prove the following result.

THEOREM 2.2. Let X have property CLUR and let K be a proximinal
subset. If P K is o.r.l.s.c. and P K is compact-valued, then K is approximatively
compact.

Panda and Kapoor [12, Theorem 1] proved this in the special case when
K is a Chebychev set with a continuous metric projection. Since every apprxi­
matively compact Chebychev set has a continuous metric projection (Singer
[13]), we obtain

COROLLARY 2.3. Let K be a Chebychev subset of a space having property
CLUR. The following-statements are equivalent.

(1) K is approximatively compact,

(2) P K is continuous,

(3) P K is-o.r.l.s.c.

Oshman [11] and, independently, Panda and Kapoor [12] proved the impli­
cation (2) =;,. (1). We do not know whether the converse of Theorem 2.2
is valid. However, the above corollary shows that the converse is valid for
Chebychev sets.

DEFINITION 2.4. Let K be a subset of X. P K is upper semicontinuous
(u.s.c.) at X o iffor each open set Wwith PK(XO) C W, there exists a neighbor­
hood U of X o such that P K(X) C W for every x in U. P K is called u.s.c. if it
is u.s.c. at each point of X.

For Chebychev sets, u.s.c. and continuity are obviously identical.

LEMMA 2.5. Let K be a proximinal subset of X, x E X, and suppose every
minimizing sequence for x has a convergent subsequence. Then P K is u.s.c.
at x and Px(x) is compact.

Proof That P K(X) is compact is obvious since every sequence in P K(X)
is minimizing. If P K were not u.s.c. at x, there exist an open set W=> Px(x)
and a sequence x.n --- x such that P K(Xn)\ W = 0. Choose y." E P K(Xn)\ W.
Then

II x - y." II ~ II x - Xn \I + II x." - Yn II = II x - Xn II + d(xn , K) --+ d(x, K)

so (Yn) is minimizing for x. Let (y.,,) be a subsequence with Yn --- Yo .
~ k

Then Yo E K and, from the above inequality, II x - Yo II ~ d(x, K). Hence
Yo E PK(x) C W, so Yn

k
E Weventually, a contradiction. I

In particular (Singer [13]): Every approximatively compact set has a
u.s.c. metric projection. The main result of this section is
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THEOREM 2.6. Let X be a CLUR space, K a proximina/ subset, x S X
Y E PK(x), 0 < A < 1, and z = Ax + (1 - A) y. Then:

(l) every minimizing sequence for z has a convergent subsequence,

(2) PK is U.S.c. at z,

(3) PK(z) is compact.

In particular, there is a dense subset of X on H'hich PK is u.s.c. and compaCl­
valued.

Proof In view of Lemma 2.5, it suffices to prove (1). We may assume
x E K. Note that Y tt PAz). For each n, let

Kn = {u E X: II u - z II ~ II z - y II + lIn, Illl - x Ii ):; Ii x - y Ii}.

Let (y,,) in K be a minimizing sequence for z. Then there is a subsequence
(Ym(n» such that Ym(n) E Kn for each n. By Lemma 2 of [12], (Ym(n» (and
hence ( Yn) also) has a convergent subsequence. I

COROLLARY 2.7 (Panda and Kapoor [12]). Let X be a CLUR space.
Then the metric projection onto each Chebychev set is continuous on a dense
subset of X.

COROLLARY 2.8 (Panda and Kapoor [12]). In a CLUR space, every
proximinal f3-sun is approximative!y compact.

Proof Let K be a proximinal f3-sun in X and Z E X\K. Choose yEPK(Z)
so that y E PK(z + A(Z - y» for all A ):; O. Given ,1.0 > 0, let x = Z +'\0 x
(z - y). Then z is a convex combination of x and y and Theorem 2.6 implies
every minimizing sequence for z has a convergent subsequence. Thus K
is approximatively compact. I

It is natural to ask whether an approximation theoretic characterization
of CLUR spaces exists. For example, are these spaces characterized by the
property that the class of approximatively compact sets coincides with the
class of proximinal sets having u.s.c. (os o.r.l.s.c.) and compact-valued
metric projections?

3. A CLASS OF SUNS

A normed linear space X is called NLUR (Oshman [9]) if (xn ) in S(X),
Un), (f~n» in S(X*),fn(xn) = 1 =f~n)(xo) (n =0,1,2, ...), d(xo' HJnln Hn)~O,
and d(xn , HJnl n H n) --+ 0 imply X n~ xo , where

H~n) = {x E X: fJn) (x) = I} and H n = {x E X:fn(x) = I}.
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Oshman [9] essentially showed that in a reflexive rotund space with NLUR,
the metric projection onto every Chebychev fJ-sun is continuous. It is not
known whether the converse is true. (The converse is false without the
assumption of rotundity. This follows by observing that each non-rotund
fiinite-dimensional space is CLUR but not NLUR and then applying
Corollary 2.8, above.) As an initial attempt to obtain a (negative) answer
to this question we investigate the class of fJ-suns studied by Oshman [10,
Lemma 2]. We show that these fJ-suns-indeed, an even larger class of
fJ-suns-always have continuous metric projections. The essential ideas
of the proof of Lemma 3.1 can be found in [10, Lemma 2]. Since the proof is
short, we have included it here for completeness.

For the remainder of this section, unless otherwise stated, we fix a normed
linear space X, X o E S(X), and a weak* compact subset {fi : i E I} of the set
{fE S(X*):f(xo) = I}. Let

v = U{y E X:j~(y) ~ I}.
ieI

LEMMA 3.1. V is a proximinal fJ-sun. More explicitly, x + d(x) X o E Pv(x)
for each x E X\V, where d(x) = infi[l - fi(x)].

Proof Since V is the union of the closed half spaces Hi = (y E X:
fi( y) ~ I} (i E l), it follows that for each x E X\ V, d(x, V) = infi d(x, Hi) =
infi[l - fi(x)] = d(x).

Let y = x + d(x) X o ' Then II y - x II = d(x) = d(x, V). Thus to show
y E Pv(x), we need only show y E V. By weak* compactness we can choose
an index io E I so that d(x) = 1 - fi (x). Then

o

so Y E V. In particular, V is proximinal.
It remains to show that V is a fJ-sun. Let x E X\ V and x' = x + d(x) X o •

By the preceedingargument, x' E Pv(x). Let ,\ = x' + '\(x - x'). We will
show that x' E PV(xA). For each v E V, choose i E I so thatfi(v) ~ 1. Then

II X A - x' II = ,\ II x - x' II = ,\ d(x) = d(x) - (1 - ,\) d(x)

~ 1 - fi(x) - (1 - ,\) d(x) ~ fi(v - x) - (1 - ,\) d(x)

= fi(v - x,\) ~ II v - X A II·

Thus x' E li'v(x) and V is a fJ-sun. I
Oshman [10] established Lemma 3.1 in the particular case 'when

V = {y E X:f(y) > 1 for somefES(X*)withf(xo) = I}.
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THEOREM 3.2. If V is a Chebychev set-lvhich will be the case when X
is rotund-then PI' is continuous.

Proof Assume V is Chebychev. By Lemma 3.1, Pv(x) = x + d(x) XI}

for each x in X\ V. Since PI' is continuous on V, to show continuity of PI',
it obviously suffices to show that the function x -+ d(x) is continuous on
X\ v. Let x E X\ V and X n -+ x. Since d(xn) ~ 1 - /;(xn) for each i E I, we
have lim sup d(xn) ~ d(x). Next choose in E I so that d(xn) = 1 - /; (xn),

Let fE x* be a weak* cluster point of (Ii). Then f = /;0 for some il} E I.
Since

I/;.(xn ) - l(x)1 ~lin(xn) - /;J'()! + I/;n(x) - l(x) I

~ I X n - n 1+ I/;/x) - l(X)l,

we have (by passing to a subsequence if necessary) that h,,(xn) -+ j(x).
Hence

lim inf d(xn) = I - lex) ): d(x).

Thus

d(x) ~ lim inf d(xn) ~ lim sup d(xn) ~ d(x)

and so d(x) = lim d(xn). This shows that d is continuous on X\ v.
It remains to show that if X is rotund, then V is a Chebychev set. In view

of Lemma 3.1, it suffices to show that any proximinal f3-sun K in a rotund
space X is Chebychev. If this result were false, there would be an X E X\K
and distict points x', x" in PK(x). We may assume X = O. Choose yf E PK(O)
so that y' E P K[ yf + A(O - y')] whenever A ): O. In particular, yf E PK(-y').
Now either x" oF y' or x' oF yf, say, the former. Then since equality holds
in the triangle inequality, we obtain y' = x', a contradiction. I

4. LINEAR METRIC PROJECTIONS

If M is a Chebyshe~ srlbspace of the normed linear space X, the kernel
ofth metric projection PM will be denoted by MO, Thus

kIO = {x E X: PM(x) = O} = {x EO X: II x Ii = d(x, M)}.

It is well known (Holmes and Kripke [6]) that PM is linear if and only if MO
is a linear subspace. In the same paper, they proved the following results

THEOREM. (Holmes and Kripke [6]). Let M be a Chebychev subspace ofX

(1) If PM is continuous, then I + PM is a homeomorphism of X with
itself.
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(2) If PM is linear, then II PM II = 1 if and only if MO is a proximinal
subspace and x - PM(x) E PM(x) EPMO(x) for each x E X.

(3) If PM is linear and MO is a Chebychev subspace, then the following
statements are equivalent:

(a) IIPMII = 1,

(b) PMo = I - PM'

(c) (MO)O = M.

Our first observation is that to compute the norm of certain linear metric
projections, it suffices to consider only the unit ball of a rather small subset.

LEMMA 4.1. If M is a Chebychev subspace of the normed linear space X,
PM is linear, and MO is proximinal, then

II PM II = sup{11 PM(x)lI: x E (MO)O, II x II :(; I}.

Proof We first note that since Mis Chebychev, each x E X has a unique
representation in the form x = m + mO, where mE M and mO E MO. In
fact, m = PM(x) and mO = x - PM(x). Thus X = M EB MO. Since MO is
proximinal, we also have X = MO + (MO)O (i.e., X = {mO + mOo: mO E MO,
mOo E (MO)O}. Finally, recall that since MO is a subspace, PMo is "additive
modulo MO": PMo(u + v) = PMo(u) + PMo(v) for any u E X and v E MO.
Thus we have x = m + mO and m = m10 + mOo, where mE M, mO, m10 E MO,
and mOo E (MO)o. Since MO is a subspace mlo + mO E MO and

so

In particular, II mOO II = II x - (mO + mlO)11 :(; II x II. Also, by linearit)
of PM'

This shows that for each x E X with II x II < 1, there is an mO E (MO)O with
II mOO II :(; 1 and PM(mOO) = PM(x). Thus

II PM II = sup{ll PM(x)ll: x E x, II x II ~ I}

~ sup{11 PM(x)ll: x E (MO)O, II x II ~ I} ~ II PM II

and the result follows. I
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If 1\1 is a Chebychev subspace of X, the norm of PM , whether PM is linear
or not, is defined by

!I PM II = sup{i[ PM(x)lI: II x Ii ~ I}.

Since PM is the identity on M, II PM II ~ 1. On the other hand, since

II PM(x) Ii ~ II PM(x) - x II + II x II ~ 2 II x :1

for every x, it follows that II PM II ~ 2. Thus 1 ~ Ii PM Ii ~ 2. In a Hilbert
space it is well known that the metric projection onto a closed subspace is
always linear and has norm one (viz., it is the orthogonal projection). In
general normed spaces however, with the exception of Chebychev subspaces
of codimension one, Chebychev subspaces having linear metric projections
are relatively scarce. (For example, the space qo, 1] has none with finite
dimension [5].) The next two results state, in particular, that linear metric
projections exist with every norm size possible. (We use the notation f1(2)
to denote the space 1R2 with the norm II(IX, ,8)11 = i ei [ + ],8 I.)

PROPOSITION 4.2. For each real number I' with 1 ~ r ~ 2, there is a
one dimensional subspace M = M,. of 11(2) with the following properties:

(1) iVI is Chebychev,

(2) PM is linear,

(3) Ii p.\[ II = 1',

(4) MO is Chebychev,

(5) PMo is linear.

Proof Choose an angle BE [0, 7T/4) so that tan B = r - I. Define the
subspace Af = M r by

M = {x = (y, y tan B): y E IR}.

For any x = (ex, ,8) in IllR) and y = (y, y tan 8) in M, we have

i1 x - y II = I IX - y I + :,8 - y tan f) 1
?: I IX - y I tan f) + I ,8 - y tan eI
?: I IX tan B - ,8 I

and equality holds only if IX = Y (since 0 ~ tan 8 < 1). But Yo = (ei, IX tan 8)
satisfies II x - Yo II = 1,8 - IX tan 8 I. Thus Mis Chebychev and

V(IX, ,8) in il2). (*)

In particular, (1) is verified, and (2) follows from the relation (*).
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(*) If [I(ex, ,8)11 ~ 1, then

II PM(ex, (3)11 = II(ex, ex tan 8)11 = I ex I (1 + tan 8) = I ex I r = r

and equality holds for (ex, (3) = (1,0). Thus II PM II = r.

(4) From (*) it follows that (ex, ,8) E MO -¢> ex = 0. That is,

MO = {CO, ,8): ,8 E IR}.

If x = (ex,,8) and y = y = (0, y) E MO, then

II x - y II = I ex I + I ,8 - y I ? I ex I

and equality holds-only if ,8 = y. This shows that MO is Chebychev and

PMO(Cl, (3) = (0, ,8).

(5) follows from Eq. (**).

(6) For each (ex, ,8) with lI(ex, ,8)11 ~ 1, we have

(**)

so II PMo II = 1.

(7) (MO)O = {(ex, ,8): PMo(Cl, (3) = O}
= {(ex, 0): ex E IR}

and (MO)O =1= M if tan 8 oF 0, i.e., if r =1= 1. I
Remark. Using Lemma 4.1, it is not hard to see that there is no Chebychev

subspace M of 1l2) with (PM linear and) II PM II = 2. More generally, we
prove

LEMMA 4.3. If X is a finite-dimensional normed linear space and M a
Chebychev subspace, then II PM II < 2.

Proof If II PM II = 2, then by compactness of the unit ball in X and the
continuity of P,H , there would exis- x E X with II x II = 1 and II PM(x)11 = 4.
Hence

2 = II PM(x)11 ~ II PM(x) - x II + II x II ~ 211 x II = 2.

Thus equality must hold throughout so [I PM(x) - x II = II x II. This implies
that PM(x) = °which contradicts II PM(x)11 = 2. Thus II PM II < 2. I

Thus to find a Chebychev subspace with (linear) metric projection having
norm 2, we are forced to consider infinite-dimensional spaces.
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PROPOSITION 4.4. There is a subspace M of C[Q, 1] with the properties:

(1) M is Chebychev,

(2) PM is linear,

(3) II PAd = 2,

(4) 111° is Chebychev,

(5) PAlO is not linear,

(6) Ii P,'v[O II = 1,

(7) (MO)O =1= M.

Proof Let M = {x E C[Q, 1]: J~ x(t) dt = Q}. For each x E C[Q, 1],
let f~ x(t) dt = Q}. For each x E C[Q, 1], let IX = x - f~ x(t) dt. Then IX E M
and I~ x - .V II = I I~ x(t) dt I. If y E M, then

,I III I I II ,I! x - y II ;?: J
o

I x(t) - yet)! dt;?: ° [x(t) dt = I ° x(t) dt I= II x - x Ii.

This shows that IX E PM(X). Now equality holds in the above inequality if
and only if x - y = c, a constant. Since y E M, c = f~ x(t) dt. That is,
y = x. This proves that Mis Chebychev and

PM(x) = x - rx(t) dt.
°

(2) The linearity of PM follows immediately from (*).

(3) Given Q < E < 1 define

(*)

2
x(t) = 1 - - t

E

= -1

if 0:'(; t :'(; E,

if E:'(; t :'(; 1.

Then x E C[Q, 1], II x II = 1, and PM(x) = x + 1 - E. Since x{O) = 1,
we have that II Pw(x)11 ;?: 2 - E. Since E was arbitrary, !I PM Ii ;?: 2 and hence
II PM II =2.

(4) From (*) we obtain

MO = {x E qQ, 1]: PM(x) = Q} = {x: x a constant}.

It is well known that the constant functions form a one-dimensional
Chebychev subspace of C[Q, 1]. Indeed, if x E C[Q, 1], then

PMO(X) = t [max x(t) + min x(t)].
O~t~l O<t~l



126 DEUTSCH AND LAMBERT

(5) Define x and y on [0, 1] by

x(t) = °
= 4t - 1

=1

yet) = 1

= -4t + 3

=0

if 0:(; t :(; t,
if t:(; t :(; t,
if t:(; t :(; 1;

if 0:(; t :(; t,
if t:(; t :(; 1,
if 1:(; t :(; 1.

Then x, y E e[o, 1] and Puo(x) = t = Puo( y). But

(x + y)(t) = 1

= 4t

= 4(1 - t)

=1

if 0:(; t :(; t,
if t:(; t :(; t,
if t:(; t :(; 1,
if 1:(; t :(; 1,

so that Puo(x + y) = ! =F PMo(x) + Puo(Y). Thus Puo is not linear.

(6) If II x II :(; 1, then -1 :(; x(t) :(; 1 for all t implies

-1 :(; Hmax x(t) + min x(t)] :(; 1,
t t

i.e., II PMo(x)11 :(; 1. Thus II Puo(x)11 :(; 1. Thus II Puo II = 1.

(7) From (5) and the previously mentioned Holmes-Kripke result, it
follows that (MO)O is not linear and hence (MO)O =F M. A simple direct
proof is also available. Define x on [0, 1] by

x(t) = -4t + 1

= -1

if 0:(; t :(; t,
if t:(; t :(; 1,

Then Puo(x) = 0, i.e., x E (MO)O, but f~ x(t) dt = -t so x 1= M. I

Remark. It would be interesting to know exactly which Banach spaces
contain Chebychev subspaces having linear metric projections with norm 2.
(The above shows that C[O, 1] is such a space, but finite-dimensional spaces
and Hilbert spaces are not.)

5. THE KLEE SPACE AND CONTINUOUS METRIC PROJECTIONS

This section concerns itself with the necessaty and sufficient conditions
for a Banach space to have a continuous metric projection onto every closed
convex set. Oshman [11] has given a geometrical characterization of such
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spaces, namely, that it have property (0). A Banach space X is said to possess
property (0) if X is reflexive, and if (x,,) in SeA:), (In) in S(X*),ln(xn) = 1
(n = 0, 1,2) I" -->- 10 weakly, d(xo , Ho (\ H n) -->- 0, d(x", Ho (\ Hn) -+ 0
imply X n -->- xo , where H n = {x E X [/,,(x) = I}.

One notes that this characterization is extremely complicated and difficult
to apply to specific Banach spaces. It should be noted that if X is reflexive
and X* is Frechet smooth, then X has property (0). Indeed if (x,,) C SeX),
In E S(X*), In(xn) = 1 (n = 0, 1,...), and d(xn , H o (\ H il ) -->- 0, choose any
Yn E H o (\ H" such that II X n - Yn II -->- 0. Then

By Smulian's characterization [14] of Frechet smoothness of X*, it follows
that (x n) converges. By strict convexity of X, the limit is x.

Both ashman [11] and Vlasov [17] have conjectured that X possessing
property (0) is equivalent to x* being Frechet smooth.

In [17], Vlasov has shown that they are indeed equivalent if X is a smooth
Banach space. Previous work [8] by the second author of this paper claimed
that the dual of the Klee space [7], was an example of a Banach space such
that the metric projection onto every closed subspace was continuous and
yet the dual of that space was not Frechet smooth. A mistake in the proof of
[8, Lemma 2.1] renders all claims in that paper invalid. We show in this
section that the dual space of the Klee space does not possess property (0).
In particular, this shows that there exists a reflexive, rotund Banach space,
whose dual space has a norm that is Frechet differentiable at all points of
its unit ball except for two antipodal points and yet this space fails to possess
property (0). This seems to lend considerable support to a positive answer
to ashman and Vlasovs conjecture. It is evident why such a space should
have been considered as a possible counterexample to their conjecture. One
needs only to verify the defining property of property (0) for those sequences
(!,,) in S(X*) which converge weakly to either of the two antipodal points
of this unit ball of X* where the norm is not Frechet differentiable. Symmetry
reduces the problem and looking at only one of the points. Unfortunately
the defining condition fails at these points as we show.

Recall that /2 is the Banach space of square summabie sequences of real
numbers x = (Xo , Xl' x2 , ...) with norm II x !12 = (L~ -'n2)1/2. The vector
8n will denote the sequence whose nth coordinate is one and aU others are
zero. V denotes the subspace {x E /2 I X o = O} and the norm is denoted
!i x Ill" = (L~ X n

2)1/2.

Klee [7] exhibited an equivalent renorming of 12-call the space X­
such that X is smooth and that the norm of X is Frechet differentiable at aU
points of SeX) except ±80 • If we let Y = X* denote the dual space of X,
it is clear that Y is a reflexive, rotund Banach space from elementary duality
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2Ei ~ ,\ ~ I - Ei ,

considerations. It is the space Y that we will show does not possess pro­
perty (0).

We recall the renorming of /2 given in [7]. Let

OIl" = {So, -So} uIx E /211 Xo 1 < 1, I: I x(;) 1
2
~ 1/

;~1 TJ, Xo \

where each 'rJ; is an even function on [-I, 1] to [0, 1] with the following pro­
perties.

Given a sequence E; of positive real numbers decresing to zero one has

(1) TJi is the continuous and concave with 'rJi(O) = 1, TJi(1 - E;) = 2Ei
and 'rJi(1) = 0 for all i,

(2) 7Ji is differentiable on [0, I) with 7];(0) = 0 and 7]i(1 - Ei) = -I
for all i;

(3) TJi has a vertical tangent at I (i.e., limA_l- 7];('\) = - Cf.) for all i).

To facilitate our computations, we shall work with the following particular
functions having these properties:

,\2
'17;(,\) = I - -4 '

E;

= I -,\ + E;,

= vi4E;(I - ,\), I - Ei ~ ,\ ~ 1.

In [7] Klee let K to be the closed convex hull of Olt" : K = co(OlI,,). The guage
PKO of Kis taken to be the norm of the Klee space X. We set Y = X* with
norm defined by the gauge PKOO where KO denotes the polar set of K in Y.

Given x in S(X), it is necessary for us to find the norm duality mapping
T: S(X) -- S(Y) which has the property that (x, Tx) = PK(X) PKo(Tx) = 1.
One checks that TSo = So' Let F = {x E /2 1L~ 1x;/1]i(xo)1 2 = I} denote
a surface in /2' By standard infinite-dimensional calculus techniques in /2 ,
one can determine the equation of a supporting hyperplane to F at any
specific point x on F. Such an equation would have the form (rp, x - x) = 0
where rp is in /2 . Since F is a symmetric set, rp would also determine a sup­
porting hyperplane at (-x). Any supporting hyperplane would also support
the closed convex hull of{-So, +So} u F and hence support K, the unit ball
of the Klee space. Normalizing the linear functional rp will yield the norm
duality element for an element in Oltn • In particular one finds that iff is in
S(X),f = (fo '/1 ,...), then

Tf = 1 + A~f) . fo (AU), TJl~fo) , TJ2fcfo) ,...),

where AU) = L~~l - (f?/7Jl(fo)) 'I7;(fo).
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To show that Y does not possess property (0) set
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where x 2 + y 2 = 1, xy =1= 0, and the (Ej) is the precise sequence determining
the properties of the 'YJj. Clearly ji is in SeX). Tji is in S(Y) and is given by

TY " 1 ~ x ~0 ~ y ~
J = --00+-- -01 +---Ojo

1 + Ej 1 + Ej E1 1 + Ej

As j ---+ 00, Ej ---+ 0, ji ---+ Do weakly and Tji ---+ 00 weakly.
Since Y is a renorming of /2 with an equivalent norm, it can be shown that

!! Tji - 00 I!~ = 1/(1 + Ej)2(E12 + (Ej/EI) x2 + y 2) ;;?; y2/2 > 0 for all j. Thus
Tji does not converge strongly to Do . This would refute Y processing property
(0) if we can show that the ji and Tji satisfy these remaining hypothesis of
property (0). In particular we must show that d(Tji, H o n H j ) -- 0 and
To facilitate the computation we present another renorming of /2. Let B
denote the closed convex hull of {Do + S(V), -00 + S(V)}. K is contained in
Band /2 with guage PB can be shown to be equivalent renorming of 12 . In
fact, PB(X) = max{1 Xo [, II x" II,,}, where x = Xo + x" , X" in V. In the space
Y, we also obtain an equivalent renorming using PBO as the norm. In particular
PBO(Y) = IYol+l!y"llv· Clearly BOCKo and PKO(Y) :(;PBO(Y) for ally
in Y. Thus dKo(Tji, H o n H j ) :(; dBo(Tji, H o n H j ) and dK o(80 , H o n HJ :(;
dBo(80 , H o n H j ). We will show that the larger distances approach zero
insuring that the smaller ones do likewise. By definition

dBO(cx, H) = inf f3Bo(cx - h)
hEll

inf {I 0:0 - ho ! + II cx" ~~ h v l!v}.
hEll

We note that in our specific case

and

Thus

H o n H j = {z E /2 I Zo = 1 and X'YJ1(l - E;} Z1 + y17iCl - /OJ) Zj = Ej}.

Then

PBO(OI, H o n H j ) = inf {[ 010 - 1 I + il iJi v - z" ilv}
zEHor\H j

= I 0'0 - 1 I + inf It <Xv - Zv I! y
zEHOnH)

=101.0 -11+ infl!OIy-zvllv,
Zv Eo/l 't
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where oJ! = {Z E V I X'lJI(1 - E;) ZI + Y'lJj(1 - Ej) Zj = Ej} is a hyperplane
in V.

Then using the formula for the distance from an element in a space to a
hyperplane ep(z) = c (i.e., d(rx, H) = I ep(rx) - c I1II ep 10 one has PBO(OO'
H o n H;) = 11 - 1 1+ infzvE.d't II ZV Ilv

as j --->- 00.

Similarly dBo(Tji, H o n H j ) = I I - 1/(1 + Ej)1 + infz"E.d',11 Tji - Zv flv

= II __1_1 + I 2Ejx2/(1 + E}) + 2EI y 2/(1 + Ej) - E} I
I 1 + Ej 2Ej -X2(EI/Ej) + y2

as j --->- 00.

This concludes the proof that the dual of the Klee space does not possess
property (0).

The authors wish to acknowledge recent correspondence from L. P.
Vlassov. He notes that if in Theorem 2.2 one strengthens the o.r.l.s.c. of
PK to o.r.l. continuity, one obtains the following result. In a complete
CLUR space every proximinal set with an o.r.l. continuous metric projection
is approximately compact. Notice that one now need not have P K a compact
valued map. He also notes that E. V. Oshman [II, Theorem 4] proved that
in a Banach space X every f3-sum is approximatively compact if and only if
X is a CNBLUR space. Thus Oshman has claim to the result we attributed
to Panda and Kapoor in Corollary 2.8.
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